This growing research field is moving towards establishing an important enabling technology for the technological direction that has been outlined in [Dre81] [Dre86] and [Dre92], namely of eventually attaining manufacturing capabilities at the molecular level, leading to products which obtain their big utility from having all their atoms in precisely specifiable positions (as opposed to most of today's engineering materials like metals, ceramics, plastics, and wood, which have mesoscopically amorphous structures). It is useful to outline what molecular design issues in the field of supramolecular chemistry have to be systematically considered to help establish a focused effort to boot-strap molecular manufacturing.
The largest amount of insight into finding relevant design criteria for MBBs is gained if one would like to employ them in a demanding application, like the construction of molecular machinery. Not only do the MBBs have to be able to stack in three dimensions potentially infinitely (to obtain scaffolding of large dimensions), but one also has to be able to specify distinct 3D stacking patterns and sequences, to obtain the highly idiosyncratic patterns present in machinery as well as in computers. As explained in [Mer93], achieving complex long range order is necessary.
For building machinery, it is necessary additionally to be able to specify the surfaces of interacting mechanical components in atomic detail, to construct required sliding interfaces (as discussed in chapt.10 of [Dre92]) and to place functional groups which can act as specific binding receptors or as catalytic sites similar to enzymes. In mechanical components, the ratio of interior volume to surface area is much smaller than in an infinitely extended regular crystal, because in these components mainly the surface gives a part its desirable characteristics. This being so, it follows that the slim interior of mechanical parts is best held together by strong interactions, preferably through the use of covalent bonds, to avoid the part from falling apart during usage. Most attempts in designing crystals and solids [Ama93] have so far only used ionic or even weaker interactions which would be unsuitable for achieving the declared goal of building molecular machinery. That is why covalent connections between the MBBs are assumed here.
Starting from a set of clearly stated questions [Kru91], subsequent analysis has found the following issues to be important in designing MBBs:
- division into two sub-problems
- rasters and lattices
- functional group classification
- positional control
- link chemistry
- storage of MBBs
- MBB skeletons
- almost no skeleton
- the zeolite-effect
- the current status of research (end of 1993)
- MBB conclusions